December 1984

Computer Bulletin

12

Not only computing — also art

JOHN LANSDOWN

On not being precisely certain

Since the last issue, fuzziness and
uncertainty has played an even more
significant part in my life than usual.
For two months or so, I was unable

to see clearly after an operation to fix
a defect in my only usable eye. Like
the other one, it has a retina which has
a disturbing tendency to fall off and
float around aimlessly. However, the
resulting fuzziness was better than not
being able to see at all. Because of it,
computer graphics has temporarily
figured somewhat sparsely in my day-
to-day working. This year there was no
Siggraph nor Eurographics conferences
for me and this means that, for this
issue, only one illustration is available.

I did, though, attend a number of
conferences and meetings on know-
ledge-based systems. In all these, I was
struck by the fact that another form
of fuzziness affected some speakers:
they were apparently unable to
distinguish between imprecision and
uncertaintly. This is odd because these
things are by no means the same and,
if we are to represent more of our
knowledge in computers, it will be
necessary for us to be absolutely clear
about the differences between fuzzy,
imprecise concepts on the one hand
and uncertain, probabilistic ones on
the other.

We can make fuzzy statements
without any appeal to probability -
and vice versa. Thus, coming in out of
the rain, I can say with certainty that
I am wet. I might even say that I am
very wet. The words ‘very wet’ in this
context are imprecise because we
don’t have an accurate measure of
wetness when talking about being
drenched with rain. We simply under-
stand that ‘very wet’ is wetter than
just ‘wet’. I can also remark ‘It is going
to rain tomorrow’. This is not a fuzzy
statement. It is a precise statement of
my belief about the weather. It is
though, probablistic in the sense that
no one will be surprised if my predic-
tion turned out to be untrue. In a more
numerate society than we have, I might
rephrase my statement into something
like, “There is a 75 per cent chance of
rain tomorrow’. People would then
see that this is a precise expression of
a probability. Confusion arises when
we mix fuzzy and uncertain concepts
together - something that we often
do - like when we say, ‘It’s very likely
to rain this afternoon’.

For about 200 years we have had the
ability to deal with uncertainty by
means of the mathematics of prob-
ability. It’s only in the last 20 years,

due to the seminal work of Lofti
Zadeh and others, that we have been
able to cater for imprecision by
mathematical means. In both cases,
scales of values are set in the range

0 to 1. Every schoolboy knows that
something that cannot happen has

a probability of 0; something that is
certain to happen has a probability of
1. Anything that might happen has

a probability lying somewhere between
these limits: the more likely, the bigger
the number. Furthermore, the prob-
ability of two unconnected uncertain
things happening together, like for
example, my winning the pools and

it raining tomorrow, is given by the
product of the individual probabilities.
The probability that one or the other
will happen is given by the sum of

the individual probabilities.

Zadeh was the first to show that we
could handle fuzziness by analogous
methods and that our everyday
expressions like ‘very’, ‘not quite’,
‘almost’, ‘slightly’ could be treated as
if they were linguistic variables on
a scale of 0 to 1. Thus, we might say
that someone was ‘experienced’ or
‘very experienced’, ‘naive’, ‘completely
experienced’ and so on. These are
obviously fuzzy concepts but we can
manipulate them like uncertain
concepts if we assume that ‘naive’ has
the fuzziness of 0 and ‘completely
experienced’ has the value 1. Other
degrees of experience can then have
values of fuzziness somewhere between
these extremes. He demonstrated that
useful results could arise if, when we
want to assess the fuzziness of two
unrelated expressions taken together,
we take the minimum of their indivi-
dual values and, when we want to
assess the fuzziness of one thing or
another, we take the maximum of
their individual values. This means
that, given the fuzziness of ‘slightly
experienced in Prolog’ as 0.3 and of
‘very hardworking’ as 0.8, we can
assess the fuzziness of ‘both very
hardworking and slightly experienced
in Prolog’ as min (0.3, 0.8) = 0.3.
Alternatively, we can say that ‘either
very hardworking or slightly experi-
enced in Prolog’ has a fuzziness of
max (0.3, 0.8) = 0.8.

The mathematics of fuzziness is still
being worked out but, already, it has
found many useful applications in all
sorts of areas. Like probability theory,
it has many pitfalls for the unwary and
is perhaps best used for assessing
membership of classes or sets. Classical
set theory works on the assumption
that something either belongs to
a particular set or it does not. Fuzzy

set theory assumes that things are not
so clear cut and that something can
belong to a set with fuzziness of, say,
0.6 or 0.2. This idea seems to accord
more with our view of reality than
does classical set theory. We are very
hard put to distinguish things in ferms
of their everyday characteristics and
constantly meet borderline cases
which are difficult to classify. Fuzzy
set theory can certainly help here. In
particular, I see it as a potential tool
for introducing commonsense
reasoning into our computer systems.

A clearing in the forest

A few years ago (Computer Bulletin
September 1978), I commented that

I was experimenting with a parametric
method of storing details about the
graphic outlines of botanical trees to
go with my tree selection program.
Rather than store an enormous number
or graphical data on each tree in various
configurations, the idea was simply to
store a set of parameters which would
generate the configurations on

request.

Paul Brown, current Editor of PAGE:
The Bulletin of the Computer Arts
Society, did some work on this, using
a fractal approach but lots of things
intervened to prevent my continuing
with the idea. Recently, some Japanese
workers published a paper showing
that it can be done and that fairly
realistic pictures of particular trees
can, in fact, be generated from quite
limited data. Those interested will find
a comprehensive description of their
methods in the May 1984 issue of
IEEE Computer Graphics and Applica-
tions. The article is by M. Aono and
T. L. Kunii and is called, ‘Botanical
Tree Image Generafion’.

Computer art and graphics

Computer graphics is such an inviting
subject that it is not surprising that
there is currently an enormous spate
of books being published on its various
aspects. One such is Computer Art and
Graphics: how to program with
personal computers by Axel Brick
(Paul Petzold Ltd, London 1984
£14.95). This is an interesting work
which introduces readers with a know-
ledge of Basic to the intricacies of
making drawings by means of com-
puters. Unfortunately, however, many
of the most striking illustrations it




Figure 1

contains (such as Figure 1) can only
be partially created by means of the
programs given. It is clear that these
drawings have been set up and plotted
from the techniques described but
then worked on by conventional
manual means. The author does, in
fact, justify this approach in his first
chapter when he says, ‘... we will use
the computer to generate those parts
of the drawing which it can handle
more quickly, more precisely, or in
some other way more proficiently,
than we could ourselves’. This is

a perfectly justifiable approach, but
casual bookshop visitors might buy
the book before they realise that the
artist has played such a large part in
the creation of the illustrations.

It is hard to explain computer
graphics programming in a structured
way (and even harder for the reader to
understand) when examples are given
only in Basic. This is particularly so
when, as in this book, the programs
are set out from 40 column listings
and only two-letter variable names are
used. However, despite some infelici-
ties, the author does a creditable job
which could serve to encourage novices
to try their hand at creative computing.

Book reviews

Digital Systems with Algorithm
Implementation

By M. Davio, J-P. Deschamps and
A. Thayse, 1983. Wiley, £14.95

This is an advanced book, intended

for the expert in the implementation
of digital control systems. In this
respect, it is not for the computer user
with a bias towards software or data
processing applications, but very much
for the hardware and electronics user.
It is comprehensive in its covering of
the hardware process control field, and
necessarily presupposes much initial
knowledge and ability. Even in one
with considerable experience of such
systems, it was not an easy matter to
comprehend much of its contents, and
this probably reflects accurately both
its advanced status and its proper
worth. Its price makes it a most attrac-
tive buy for any suitable user who is
not deterred by a sound theoretical
treatment of an advanced applied topic.
J. H. CHEETHAM

Ada for Programmers

By Eric W. Olsen and Stephen B.
Whitehill, 1984 ; 310 pages. Prentice-
Hall, £17.05

This book is intended as a guide to the
Us DoD programming language Ada
for experienced programmers. In
particular, useful comparisons are
made between the features of Pascal
and Ada. It has the advantage that it
describes the ANSI standard form of
Ada rather than an earlier provisional
form (of which many Ada books are
guilty!). However, it fails to state the
LRM (language reference manual) used.
Thus, the reader has to deduce which
version of Ada is the subject of the
book.

Unfortunately, it suffers from several
faults which prevent it from being
recommended (especially in view of
some of the alternatives available). The
book makes no mention of interrupt
handling and the only description of
features such as representation speci-
fications, input/output and pragmas is
in the form of copies from the LERM.
These copies are exactly as found in
the official LRM including section
numbering and references (which are
meaningless in the context of this
book). The programming examples
provided in the main body of the text
do not conform to the style used in
the LRM, which is especially noticeable
since parts of the LRM are included in
the book. Tasking is inadequately
treated.

In conclusion, I cannot recommend
this book to its target audience, ie
programmers. However, if the book
were cheaper, it could be of some use
as an ‘overview’ for technical managers.
P. REID Macclesfield

December 1984

13 Computer Bulletin



